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ABSTRACT

This paper presents a method for calculating the likelihood function of

autoregressive-moving average (APPA) models for time series data. Model

estimation requires maximization of the likelihood, and to assist in this, a

method for calculating derivatives of the function is also presented. The

computational efficiency is competitive with that of other algorithms for this

purpose. Extensions which allow for seasonal models, missing data, and the

estimation of a data transformation are also described.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with the statistical analysis of time series,

i.e. records of observations of variables in fields as diverse as economics,

engineering, meteorology .... The class of ATMA models has been proved to be

most successful in representing the dynamic structure of such series and are

useful in both prediction and control, and in the investigation of

relationships between series. The models are in the form of discrete time

difference equations relating present values of the series to past values,

with a prediction error term. It is important to have precise tools for the

estimation of the coefficients in these equations, and for discriminating

between different models. Computation of the exact likelihood of a model is

important in this respect, and so is estimation of the coefficients by

maximizing the likelihood. Several algorithms for computing the likelihood

are now available, and the one presented in this paper is highly competitive

on the grounds of numerical accuracy and efficiency. It has been implemented

and proved useful for modelling a wide variety of data.
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TUB ESTIMATION OF TIME SERIES MODELS. PART I. Y" ANOTHER ALGORITHM

FOR THE EXACT LIKELIHOOD OF ARMA MODELS

G. Tunnicliffe-Wilson

1. INTRODUCTTION

The basic autoregressive-moving average model of orders p and q, or AFl4A (p,q)

model, for a time series xt, is defined by

Wt #let.1 + ... + # pt p + at - a1  - ... - qat 1.1)

where wt = xt - c, the constant c representing the expectation of xt . The unobserved

series at is assumed to be a sequence of independent random variables from a

Normal (0.0 
2
) distribution. In terms of the backward shift operator notation of Box and

Jenkins (1976) the model is conveniently written #(B)w t - e(B)at  where

*(a) = 1 - - -
p  and O(W) - 1 - 8B9 - - gq9q . 

The coefficients of the

model are constrained by a stationarity condition that #(B) 0 for R C 1. This

ensures that the process reaches statistical equilibrium or stationarity. A further

condition is that O(B) * 0 for IB < 1, which allows identification of at  with the

linear innovations (or one step ahead prediction errors) of the process, i.e.

at . xt - E(xt 
1
xt-1 xt-2 ... ). This includes the borderline case when e(3) may have

zeros on lei - 1.

Given a finite sample Xl,...,xn (and assuming the process has reached

2
stationarity), the likelihood of the model parameters B - (c, ,..., q ) may

be formally presented using the covariance matrix r of the sample, which has elements

r - cov(xX) - Y l-" We may set rij 
=
0 2V,, where V depends only on

* (*1 *'" *p) and - (01 ... 0 ). Then the likelihood is

L(8) e o'l
2

exp(-/ 2 /o
p(O -q_' 2 /2

where Q - w'V
t 
w is a quadratic form in w = (wI ** wn' and M - det V.

rponsored by the TUnited States Army under Contract No. nAAG29-80-C-0041.



When maximized W.r.t. 02, L a-n/2 where D - M /nQ. The H.L.3.a of c,#,9 may

then be found by minimizing D, which we shall call the deviance. The factor N(#,O,n)

does not depend on the data, and tends to a limit N(#,O) as n • -. Consequently

M1/ n * I for any fixed # and e, and is often neglected in large samples, but in

important when n is small, or *,e are close to their constraint boundaries.

The form Q may be evaluated by many devices, most of which involve a sum of square*

function roughly of the form C a &,;, where the terms at  are regenerated from the

data via the model (1.1). Lack of knowledge of st for t < 0 (the end effect) however.

prevents exact evaluation of a, ... an, so they are estimated by various means ranging

from the ingenious bockforecasting scheme of Sox and Jenkins (1976) to the general methods

of Newbold (1974) and Ljung and Box (1979). More recently Q has been calculated as a

weighted sum of squares of innovations based on the finite data set,

bt . xt - 3(xtIxt-. - xi), so that

2
nb n

, t 1

Although at - bt * 0 and ht * I as t increases, the residuals may differ

0 ,an 2 .2appreciably for small values of t, e.g. b1  x and h1 - var(x t/02 always. The

projection techniques for constructing bt may be based on direct use of Cholesky

factorization as in Ansley (1979) or on the Kalman filter as in Gardner et al. (1980).

They are computationally efficient, and by exploiting the special structure of the AI44A

model within the Kalman filter, W61ard (1983) has produced an algorithm which is extremely

economical in its use of arithmetical operations and core storaqe. The algorithm

presented here follows more closely the classical approach of Ljung and Box but exploits

simple special methods which have been long known for pure AR(p) and MA(q) models.

This simplicity allows convenient analytic computation of the derivatives of the deviance

-2-



for use in minimization routines. Not only Is this more accurate than the use of

numerical derivatives, it may also be computationally such cheaper when the orders p~q

are greater than one.

-3-



2. DNMWHEOPKT OF Tril ALGORITHM

It is convenient to reproduce first the algorithms for the cases of the pure AR(p)

and NA(q) models since these are the basis for the general ARMA(p,q) case.

For the AR(p) model define series

a = wt - *w t_1 - "- ptpI t * I *.. n

bt wt - *i~t 4 l ... w t = (0 - p) 0

where the values of wt  for t < 0 are all taken as 0. Then

n 0

7 a t- F bt.
t I t=1-p

The factor M remains constant for n ) p in this case, so is found from the came

n - p by extracting from Q the elements of V
"1  

P as

p-i p-1

Fij - fkfk+L fkfk+ for i,j = * p and I ) j

where f0 = f. fk = "k for k a I **. p and I - i - J.

N may then be obtained as I/det F, though we shortly provide a more efficient

procedure for its calculation.

The above expression for Q is to be found in Ljunq and Box (1979) equn. (4.4) and

is derived by exploiting the time reversal sywmetry of the model as in Box and Jenkins

(1976), Appendix A7.S.

The calculation of det F follows a scheme based on the reverse of the Durbin-

Levinson algorithm as presented by Tunnicliffe-Wilson (1979), p. 303. It is based on the

reduction of fo 0 . fp to a new set, say f6 *. f . where p' - p - 1, by f I-;

f . (f -f f )/T for j - I *.* p where Tp - (I - f
2). This is repeated with

k k-j p pp

f',p' replacing f,p until p' 1. Then

det F - I I k • (2.1)
k-I

-4-
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This also provides a check on the stationarity condition which is satisfied iff

Tk  > 0 - see Duffin (1969). For the MA(q) model, the first step is to introduce

variables (ao.q,...,a0 ) = a corresponding to the pre-observation period innovations.

If these are supplied, the remaining set (a, ... an } = a; may be regenerated by

at = wt + Olaft 1 + --- + e, t = I -0 * n (2.2)

and a sum of squares calculated:

n

S(SL) t1
-q

Then Q = min S. The minimizing set aL may be found by linear least squares and N
aL

obtained as the determinant of the matrix in the least squares equations. Details are

given in Box and Jenkins (1976) Appendix A7.4. Following ideas in Ljung and Box (1979) it

is convenient to use the backforecasts (wl1 q,...,w O ) = wL as an equivalent set of

variables in place of aL. The least squares equations are then of the form

X'XwL X a

where a' - (aL,a;) with aL 0 0, and Xij - w,_ ,, the sequence w being the model

w-weights. The Jacobian between aL and wL is 1, so again M = det(X'X).

The combined algorithm for the mixed model, AMA(p,q), again requires the

introduction of the set WL, which is to be estimated by wL . In this process it is

natural initially to set wL 0 0, but because estimation of the model parameters B is

Iterative, it is convenient to initialize wL to the value wL from the previous

iteration and then to estimate a correction Sw. Thus we take wL to be set to some
WL*

Initial value, not necessarily 0. The procedure is then to regenerate

a Wt-l w + a +" + a t - (1-q) ... n
t wt - ** p t-p It-1 q t-q'

b t t - w w + 1 b + *. + 0 b , t "(-p-q ) (-q ) (2.3 )

t wt lt+ " pt+p qt-q

taking wt at - bt = 0 for t ( 1 - q.



Setting (aS1  **" an)' = a etc. we shall represent (2.3) by

a= w(B)w b 
=

( w=X(B)w (2.4)O (B) O(n)

the vectors being of lengths n + qp respectively in these two equations. The 'sum of

squares' function is then

°(L 2 2,5
S a t b (2.5)

t-1-q t-1-p-q

and again, Q min S = S(. ). This minimization requires calculation of the coefficients
wL  

L

(w0,... W - w' and (x-., ... X_ X', by applying the same equations (2.3) to

an impulse sequence I = (1,0,0...) in place of w. Thus

w = w(S]I X X
(
B)I • (2.6)

The estimate is w L + 6W, where 6. is the solution of A6wL = -G, the

terms in this equation being given by

n+q 0
=J t I t-t-I - X i,j = 1,...,q (2.7)

t.1 -p

n+q 0

G 2 , i 1,...,q . (2.8)t.I  t-it- - ib-t=1-p

The minimum value Q may be obtained as S( WL), or as

Q = S(wL) - (
6wL)'G

The factor M in the likelihood is then given by M = det A/det F where F is defined

from the Autoregressive parameters as for the pore AR(p) model.

An example - the ARNA(1,1) model.

Taking wo 0 calculate a = wt - *wt + Oat-I; t = I ... n and bi = 0. Also
n

O w1, ( ) +1 = (a - )9n, andX 1 = -*. Then S(w0 ) = 
2

-6-



(A - 0)2(1 62 + * *2n ) 
- *2, - ( etlt

-g/A, Q - S(w0 ) -w0 g.

F - 1 -
2 

and on simplifying ,

(4 - e)2 (1- 2n)/{(1 - *2)(1 - 82)) if 6 * 1

N-A/F- +

n(1 - #)/(0 + *) if 0 = .

Verification of the algorithm. Zxpress the model (1.1) using an intermediate series vt,

as wt - e(U)vt where *(B)v t = at . Take as before, VL - (V-q ...,v0 )

v R = (vI,...,Vn). Then we have the MW pdf

f(v) - f(vlv R ) a-Ondet F 1/2 xp-1/2 8/0
2  

(2.9)

where S = E a
2 

- E b
2 

with at,b derived from v as for the AR(p) model.

Defining now (wLwR) = O(B)(VLVR), we have w as precisely the set of observed

series values, whereas wL must be considered as merely a linear transformation of VL

and not as a set of true series values, because in its definition vt  is set to 0 for

t < 1 - q. The Jacobian of all these transformations is 1, so (2.9) is also the MVN

pdf f(wL,wR). Also, S as a function of w corresponds exactly to the constructions

(2.3) and (2.5). By the properties of the MVN distribution, any set of variables (in

this case wL) may be integrated out by minimizing the exponential term S, which in

effect expresses

S(wL) - Q + (wL - wL)A(wL - wL }

where Q = S(w L). The usual algebra then gives the pdf f(wR) by replacing S by Q in

(2.9) and introducing the factor I/dot A 1/2 to give the stated form of 1.

-7-I



3. COMPUTATIONAL REQUIREMENTS

We present the dominant terms in the number of multiplications (mults) required for

calculating the deviance. It is worthwhile considering here the possibility of 'sparse'

seasonal models e.g. the multiplicative operator (I - eB)( - OB12) used in the airline

model. We shall use q for the total number of coefficients in such a moving average

operator, e.g. two in this case, and s for the maximum order, e.g. 13 here. We use p

in a similar manner to q. Thus to calculate one term at  needs p + q mults, but we

need a 'backforecasts' wL . Most of the calculations for the series bt are small

compared with those for at  so are left out. Similarly we shall use n where in some

cases we should strictly use n + q e.g. for the length of at •

Step (2.3) to regenerate at  requires n(p + q) mults.

Step (2.6) to obtain wi requires nq since for i > p the AR terms are not required.
1 n2

Step (2.7) to set up A requires - nr mults as it stands and exploiting symmetry.

However, following Ljung and Box there are two possible economies. Computing the first

column of A, i.e. Ai,1, i = I a s requires only ns mults and other entries may be

obtained by Ai+i,i+i = Ai, j - 'n+s-iWn+s-j , requiring few mults. Furthermore the first

column in A may itself be found as the first a value in the sequence determined as

(B-1 )1. This has an advantage for seasonal models of requiring only no mults, if

organized carefully. Similarly, by constructing (B-I )a the elements of G can be
-1

obtained in nq rather than ns mults. To apply (B ) efficiently in this case would

be to compute e.g.

et = a t + 8
1et +,. . + eet+q , t = n .." I - q

taking et = 0 for t > n, then

GI - e i- 01 e i+l-q- p e i+p-q ,  i s

Solution of the equations and evaluation of det A, may be performed using a

Cholesky decomposition with (1/6)a 3 mults. Computation of det F requires 1/2p2 mults

which we neglect, giving a minimum number of n(p + 4q) + (1/6)s 3 mults.

-8-



T3

The main penalty here is the term in a 3 , and associated with it is a storage

requirement of 1/2,2 real numbers for A. For many applications this is no burden,

including seasonal models with typical values of s - 13. However, in some large

organizations models of hourly data with a seasonal period of one week are routinely

fitted (using at present the classical backforecasting scheme of Box and Jenkins) and here

a value of s - 168 + 24 + I - 193 is common. In this context the method of M&lard would

be expected to have a distinct advantage. The special structure of A does give some

hope of treatment by special means such as have been presented by Dickinson (1978) which

may reduce the number of multiplications to O(s2 ) and storage to O(s).

For a pure moving average multiplicative seasonal model, Hillmer and Tiao (1979) also

provide a scheme which reduces the number of operations in this stage to O(q 3).

In circumstances where the sequence w can be considered to decay to 0 before

t = n, it is possible to use the classical backforecasting scheme to generate wf, and

the method of McLeod (1977) to determine the factor M. The formula (2.1) may be

2exploited in McLeod's procedure, so that the number of computations is O(p + q)

Given that much of the execution of a statistical package is occupied with

organizational aspects, computational efficiency in the main algorithm is not always

vital. The advent of parallel processing may favor some algorithms which can exploit this

feature, and which were previously uncompetitive. Nevertheless, problems are bound to

arise which stretch the resources available, and effort put into algorithmic efficiency is

then appreciated.

-9-



4. COMPUTATIO OF DERIVATIVES

The derivative of D vrt the model parameters B may be expressed as

11/n{(Q/n)(3/38)(loq det A - log det F) + aQ/al M/nG(O) (4.1)

where, now introducing B as a parameter,

Q(B) - min S(w L,B) - S((L (0)0)-
wL

L

From this 3 L B, since aw 0 at L . Now writing e.g. a t  for 30- we3ro this,

have simply

asas = 2(t at a - Z btb8 t ) , (4.2)

where the summations run as in (2.5). We now turn to the computation of the sequences

aBbB and use operator notation such as in (2.4) to represent equations such as (2.3)

which are actually used for the computation. Recall that when such equations are used all

variables associated with times before the first point in the sequence are taken as 0.

For the model constant term c, ac - -w(B)u where u is a sequence of ones from

t = 1, with zeros for t ( 0. In fact act = actI - I  for t ) 1, which saves on

computation. (Note that for the sequence W, our indexing convention is chosen to agree

with the notation of Box and Jenkins, so that the first term in the sequence w is W0 ,

even though it is associated with the first time point t = 1 - q.)

For all the autoregressive parameters we need generate only two series

a4 - -1/e(E)w, b4 = -B/e(B)w (4.3)

from which may be obtained all the required derivatives

at /a k t a t k ,  abt/a# k  - b# t-(p-k) (4.4)

The shift B- p  in the operator generating b* is a formality to ensure merely that we

can continue to use the span of p values hO1-p-q ... bo_q which would otherwise

contain zeros.

For all the moving average parameters we generate series

a8 = I/e(B)a, be I/O(B)b (4.5)

- 0-



fram which

t = sotkI Dbt/
3
0k = bet-k  (4.6)

Thus all the derivatives of S can be constructed with a further n(p + 2q) mults

including accumulation of the products, if (4.3) is used as first step in constructing

at •
t urning now to (3/30)log det A = tr(A -13A/3), the matrix A- is obtained as a by

product of solving the equations for SWL, with relatively few further operations. The

elements of 3A/30 are of the form

3A /30 =2(E t - X(X (4.7)

where for the autoregressive parameters #.*

= -1/S(B)! and X# = "B'P/e(B )z (4.8)

and k is replaced by p - k in the second sum of (4.7), as in (4 4). For the moving

average parameters,

wO - I/O(B)w and X9 = 1
/e(

B
)X

Thus only two new series of length n need to be constructed, and the sums in (4.7)

may again be formed using the operator w(B
- ] 

as in the construction of A, with as few

as 2nq further mults. Finally the trace terms may be accumulated with 1a2[p + q)

mults.

The derivative of log det F is tr(F I F/3B) and is required only for the AR

parameters. In fact F1 - V which has elements Vij= vp 1 i.4 for i,j - I -..

2
where v is the variance of a series following the AR(p) model with a = 1, and Pk

is the acf of the series. These may all be rapidly constructed as described by

Tunnicliffe-Wilson (1979), following the construction of det F in (2.1). Then the

required derivative wrt +k is, after some simplification, given by

p'

k -- 2v I (p' - i - k)fP kil4.9)
i=O

-11-
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where p' - p - 1. This agrees with the formula obtained from (W7.5.16) and (A7.5.17) in

Box and Jenkins (1976) if the former Is used to eliminate 0 k-pl .

In total therefore, some n(p + 4q) + 
1
22p + q) mults provide all the first

derivatives of the likelihood, barely more than is necessary to compute the likelihood

itself.

Hessian approximation.

It is possible to obtain an approximation to the second derivatives of D, which is

in many cases adequate for use in Iterative minimization schemes similar to those of

Marquardt (1963). The first step in this approximation is to retain only the term

M1/n a2 Q/03 ndfernitn M i/n
/n2/ 36 on differentiating D Q. This Is reasonable at points away from

the boundary of the parameter space determined by the stationarity and invertibility

conditions, because then M - i and can be treated as a constant. To determine the

matrix Q6O, say with elements 3 2Q/3B I we use the corresponding second derivative

matrix of S(W ,) partitioned according to the two parameter groups wL  and 0 as

H11  H12

H=

H21 H22

Provided H is evaluated at wL(0), it Is true that QOB = H22 - H2 1H_ H 12. It is not

necessary to evaluate this explicitly if it is desired to use a quasi-Newton method to

calculate a parameter correction 60. setting 6' - (6w,6') and G' = (0',G(B)'), it

Is sufficient to solve H6 - -G. The zero In G comes from the derivative of S wrt

WL • The correction term 6w need not be saved, or even evaluated, because after the new
WL. L

parameter set 0 + 60 is constructed, wL will be redetermined at this new set at the

start of the next Iteration.

A further approximation is in the evaluation of

H - 2{(E a tiat'i + I atat,ij) - (E bt Ibt' j + E bt bt )) . (4.10)

The second sum In each bracket Is discarded in the approximation, where e.g. ati

-12-
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represents the derivative of at with respect to the iVth parameter in the set (WL,B).

If at  is linear in both parameters, a tij is in any case 0, and close to the origin

any nonlinearity in the parameters B is not great. Furthermore, at the true parameter

values the second sum has expectation zero and magnitude (mn) compared with a magnitude

of O(n) for the first term.

It is convenient if H is positive definite. The above approximation ensures this

provided only that the model contains no AR parameters. If AR parameters are present

an adequate remedy is to start the summation of the 'a' terms from t = (I - q + p) and

to drop the summation in the 'b' terms whenever the derivative is wrt to at least one

AR parameter (but not otherwise). 0 1

Constraints on the magnitude of the parameter correction 60 may be obtained by

adding s diagonal matrix A to H 2 2, and adjusting A using strategies similar to those

of Marquardt (1963) to ensure a decrease in the deviance at successive iterates. The

parameters may be kept within their constraints by this device. As the iterations

converge the matrix H will also converge, and it may not be worthwhile re-evaluating

it. From the Cholesky factorization of H the matrix L - QB may then be evaluated

and used unaltered to obtain SB - -LG(B) in following iterations. A further possibility

from this point is to update L using a variable metric scheme which incorporates

information from the values of C(B) at successive iterations. A library optimization

routine might be used for this purpose. This may be particularly useful when the minimum

deviance estimates B lie close to the boundary of the parameter space. Experience shows

that the deviance can be remarkably flat in this region for some MA models, and iterates

can be slow to converge if high precision estimates are required.

It should be noted that all the terms at,at' i etc. used to construct the

approximation to H have already been calculated to construct the deviance and its first

derivative. Indeed, H1 1 = 2A as used to obtain wL. Approximately n(4q + 2p) further

mults are required to complete H. To solve the equations for 6B will require

-13-
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approximately (1/6)(s + p + q)3 mults. The computational burden In therefore once more

comparable with the calculation of the deviance itself.

Upon convergence, the matrix L may be used to obtain an approximation to the

dispersion matrix C of the parameter estimates, as C - 2Lo2, where

a a Q/(n - 1 - p - q). The factor 2 occurs explicitly in all the derivative formula and

because it cancels, can in practice be omitted throughout, as can the factor M/n.

-14-



S. SOME FURTHER CONSIDERATIONS

Multiplicative Operators. The whole of the foregoing algorithm i. easily modified to

allow for multiplicative operators such as (0 - OB)(1 - 012) which appear in seasonal

models. The main point here Is that there is no necessity to multiply out the operators

in order to apply them, e.g. to derive at - (I - OE)M - 12 ))-lw it is sufficient to
itissufcintt

urn.

at wt + t-12' at - at + eat-,

Furthermore, the derivatives of at  wrt just one of these parameters is again

simple to obtain, e.g. 3a t/3 - -1/O(B)a t  as before. The use of multiplicative

operators is also useful in non-seasonal contexts, particularly where quasi-cyclic

patterns in data are represented by AR operators of order two with complex roots. Where

more than one such cycle is present, a second order operator can be associated with each,

as an explicit factor in the full AR operator. Suppose we have two such factors, so

that e.g. at - *(B)#2 (B)/(B)wt , then we use simply the series

at/a # - 2 (B)/(B)wt for the calculation of derivatives. In order to obtain det F

in this case, the coefficients f = (foofle...#fp+p) can be generated by applying

f = #1(B)#2(B)I where I - (1,0,...). The derivatives of log dot F wrt the

coefficients #,1 ... 4,p 1 of 41(B) are h1 - (h1 ,1D... ehiepj) 2 2(9 1)h, where

h = (hith2 ,... 1hp+p 2 ) are as calculated in (4.9), with p' = P1 + P2 - 1 and Ok

derived from f.

Missing data. Methods based on the Kalman filter are well suited to handling missing

data. Provided there is not a very large number of missing values, the algorithm

presented here can be used with reasonable efficiency, and certainly with convenience. A

missing value at time T, say wT  is appended to the set wL  and treated in exactly the

same way. The derivatives are extracted from the same w sequence, and used in the

minimization of S wrt the extended set, to yield 9 and det A. Note that A is also

extended in size by these missing values, and this treatment supplies both the estimates

of the missing values and the exact likelihood of the set of observed data points. An

-15-



alternative is to treat the missing values am nuisance parameters which are estimated by

least squares. This would correspond to the intervention analysis approach of estimating

missing or corrupted data. The procedure would be exactly the same except for the

definition of the likelihood in which dot All would be used in place of dot A, where

A1 1  is the submatrix of A corresponding to the backforecasts wL above.

If there is a large consecutive set of missing values then it is again possible to

make economies in the accumulation of the elements of A, but this is not worth while for

irregularly scattered missing data.

Box-Cox transformation of data. Following Box and Cox (1964) define

(xA - 1)/A - c for A 0

W =

log x -c for 1 0

In this case the likelihood is multiplied by Hx A
"1 

and the deviance is redefined
t

1/n,,-2(A-1) 1/n
as D - MnG where G = (lx l is the geometric mean of the data. It was

pointed out by Box and Cox (1964) that if the data is first scaled by G, i.e. x t/G is

used in place of xt, then the geometric mean of the scaled data is one, and the Jacobian

disappears from the likelihood. In our case the deviance would only then depend on A

via the factor Q. We do not use this device, but follow its implications. Proceeding

directly, the factor G is formally retained in the definition of D and all its

derivatives, including those wrt A, provided we use aQ/3A - 2(E ata A - E btbA ) where

A A 
t

e.g. aAt = G A(at/G )/ as /D - atlog G. We derive at /a as w(B)wA where

wA = Dw/Sk, and using L = log x, r = AL, e w exp(r) - x and w - (e - 1)/A, we have

wA = (Le - w)/A for A * 0, and 1/2 L
2 

for A = 0.

A similar formula is used in constructing the approximation to the Hessian, so that

an element HBA, where B is any other parameter is formed as 2(t aB aA - Z bB bA).
t t t t

However, when the element HAA is formed the corresponding expression E ax - E bA2

t t

must be augmented by a term

vL E a tAX t E b t bb t

-16-
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where e.g. a) t - a at /x
2 

- a t(log G) 
2 . 

This supplies the exact second derivative at

the minimum of 9 wrt A.

The point here is that vL does not become negligible for large n. Indeed

Brubacher (1976) shows that provided wt  is Gaussian, vL/n + Var(log xt) > 0 at the

true value of A. It is therefore recommended that whenever vL is positive it is

incorporated in HAA throughout the iterations. Besides possibly slowing the convergence

of the iterates, its absence will lead to an over estimate of var(;) from the inverse

Hessian.

2 2 2 2 2
Again we derive 8 a t/3 as w(B)wXX where now w) 3 w t /ax = M - 2w(L)/

for ) C 0 and 1/3L
3  

for A - 0. It is important to avoid numerical instability in the

region close to 0 = 0, and it is recomnended that if Ir - IX log xj is small, the

transformation and its derivatives should be evaluated using the first two or three terms

in the series

w - L(1 + 1/2r + 1/6r
2 

+..-

wA - L2(1/2 + 1/3r + 1/Sr 2 
+

WAX - L 3(1/3 + 1/4r + 1/10r
2 

+ ... )

It will be noted that the factor G appears in both the first derivatives

of D and in the approximations to the second derivatives, so that it may be omitted from

both of these (in the same way as M
1/n  

was omitted) when solving the equations for the

parameter corrections.
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6. INPLKM3WATZON

The foregoing algorithm has been implemented and the numerical values obtained for

the likelihood in many examples have been found to agree to machine accuracy with the

values obtained from the algorithm of Mlard (1983), which have themselves been checked

with values from the algorithms of Gardner et al. (1980) and AMaley (1979). No comparison

of actual computation times has been made, partly because not all the possible economies

in computation have yet been implemented, but mostly because the algorithms have been

embedded in a library routine and statistical package, both designed to derive the maximum

likelihood (minimum deviance) estimates. From the point of view of the user it is the

numerical accuracy and efficiency in locating these estimates which is of prime

importance. Practical experience suggests that for nonseasonal models and for seasonal

models with period 12, such as used for the airline data in Box and Jenkins, the

computational requirements are most reasonable, being of the order 5 seconds on a modern

machine, for the 10 to 15 iterations required.

t.
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